Airborne Applications of Solid State Recorders
An Overview

Stephen C. Gresley
Smiths Industries Aerospace
4141 Eastern Ave., SE
Grand Rapids, MI 49518
Phone: (616) 241-7517
FAX: (616) 241-7858
E:Mail: gresley_steve@si.com

Presented at the THIC Conference
Newport News, VA
October 15, 1997
OUTLINE

• Corporate Overview
• Our History with Flight Data Recorders
• Product Lines
 – Signal Acquisition Units (SAU)
 – Crash Survivable Memory Units (CSMU)
 – Voice and Data Recorders (VADR™)
 – Integrated Data Acquisition Recording System (IDARS™)
 » Health & Usage Monitoring System (HUMS)
• Applications
 – Standard Flight Data Recorder (SFDR) for USAF
 – Crash Survivable Flight Incident Recorder (CSFIR) for USN
 – VADR™ for the USCG
 – VADR™ for the US Army
 – HUMS for the UK Chinook
Defense Systems North America

• Formerly Lear Siegler Instrument Division. Since 1987, wholly-owned subsidiary of Smiths Industries

• Data Management Systems
 – Data Transfer Devices
 – Data Recording Systems

• Reference Products
 – Gyros & Navigation Systems
 – Fiber-optic Gyros (FOG)

• Commercial Avionics
 – Flight Management Systems
 – Cockpit Voice Recorders (CVR)
 – Flight Data Recorders (FDR)
Grand Rapids, MI

Clearwater, FL

Florham Park, NJ
DSNA Space & People Distribution

Space

Total: 859,000 sq ft

- Mfg: 58%
- Eng: 25%
- Other: 17%

People

Total: 1,551 People

- Mfg: 37%
- Eng: 36%
- Other: 27%

Strong Technical Capability with State-of-the-Art Manufacturing
SI Flight Data Recorders History

- Initial development for F-16 Crash Survivable Flight Data Recorder (CSFDR) begun in 1982
- First generation solid-state Flight Data Recorder (FDR) 1984
- SI-GR awarded Standard Flight Data Recorder contract in 1988
 - Initially identified for 17 aircraft types
 - Second generation - faster, more capable
- Over 4,700 CSFDR and SFDR shipsets delivered
- SI-GR development of Voice and Data Recorder (VADR™) begun in 1992 for SH-60J (Japan)
- Integrated Data Acquisition Recording System (IDARS) selected for JPATS and C-XX
Data Management Systems

- Signal Acquisition Unit (SAU)
- Crash Survivable Memory Unit (CSMU)
- Cockpit Control Unit
- Data Transfer Systems
- Integrated Data Acquisition Recording System
- Voice & Data Recorder

Multi-Product Capability
Multifunctional Capabilities

Recorded Data

- Individual Aircraft Tracking
- Loads/Structures Data
- Engine Usage Data
- Maintenance Diagnostics
- Health Monitoring
- Ground Collision Avoidance
- Training Data
- Mishap Data
SI Flight Data Recorders

- Versatile Recording System
 - Mishap
 - Aircraft Structures Tracking
 - Engine Monitor

- Recorded Data Supports Multiple Uses
 - Mishap Replay
 - Training Replay
 - Test & Diagnostic Support
 - Maintenance
Standard Flight Data Recorder (SFDR)

- **SOLID STATE DESIGN**
 - Small, rugged, adaptable to rotary and fixed wing aircraft
 - Improved reliability and maintainability over existing recorders such as MXU-553 and AN/ASH-28

- **MULTI-FUNCTION CAPABILITY**
 - Records Structural, Engine, Tracking, and Mishap data
 - Hosts on-board diagnostics, ground collision avoidance, mission reconstruction, embedded training, etc.

- **BENEFITS**
 - Affordable
 - Low/Zero risk
Signal Acquisition Unit (SAU)

SAU Model 2865 Characteristics

Microprocessor: M68360 Software:
- Configurable software architecture
- Coded in MIL-STD-1815A Ada
- Less than 10% change required from application to application

Memories:
- Program Memory: 512 Kbytes
- Scratchpad RAM: 512 Kbytes
- BIT Non-Volatile Memory: 16 Kbytes

Auxiliary Memory Unit:
- 3 Mbytes Non-Volatile Memory

Dimensions:

- H = 7.0 in (17.8 cm)
- L = 7.25 in (11.7 cm)
- W = 6.2 in. (15.7 cm)
- Wt = 12.5 lb (6.5 kg)
Signal Acquisition Unit (SAU)

- Analog and Discrete signals received and converted to digital formats
 - Accommodations for more than 70 inputs plus Bus I/O
- Digital parameters acquired from MIL-STD-1553 or ARINC-429 data bus interfaces
 - Redundant 1553 remote terminal/Bus monitor
 - Up to 6 ARINC-429 input interfaces
- M68360 Central Processing Unit for system control
- Parameter list and on-board calculations configured in software data tables
- High speed RS-422 interface for rapid communication, download and DTM interface.
- Extensive Built-In Test (BIT)
 - Self fault isolation to failed module
Crash Survivable Memory unit (CSMU)

- RS422 data input
- Memory: 56K to 1,024K Bytes
- Minimum Recording Time:
 - Attack/Fighter/Trainer Aircraft
 - 15 Min. Active Flight
 - 1 Hour Normal Flight
 - Transport Aircraft
 - 25 Hours
- Weight: 3.6 Pounds (1.64)
- Size:
 - H = 3.0 in (7.6 cm)
 - W = 3.0 in (7.6 cm)
 - L = 4.6 in (11.7 cm)
- Power Dissipation: <4 watts
- Underwater locatable acoustic beacon available
CSMU Characteristics

• **Operational Requirements:**
 – Hard mountable in any location, any orientation
 – No external cooling required
 – Memory options for up to 25 hours of retained flight data
 – Non-proprietary RS-422 interface for communication and download

• **Survivability: (TSO-C124 Compliant)**
 – Impact: 1700g 6ms and 200g 15ms each face
 (3400g 6ms, 14.5g-sec - TSO)
 – Penetration: 500 lb. pin dropped 10 feet, each face
 – Crushing force: 5,000 lbs, 5 minutes each axis
 – Fire: 1,100°C. for 30 minutes
 – Seawater immersion: (20,000 ft. for 30 days - TSO)
 – Contact, immersion: Jet fuel, hydraulic & lubricating oil, etc.
Voice & Data Recorder (VADR™)

- Solid-State Crash Protected Memory
- Meets TSO-C123/C124 and EUROCAE ED-55/ED-56
- Data Input
 - 1553B
 - RS-422 from SAU
- Connects Directly to Audio Systems
- Recording Time
 - Audio: 4 channels, each 30 min
 - Data: 25 hours
- Power: 28 VDC, <9 watts
- Size: 3.4 in (H) x 5.07 in (2) x 6.5 in (D)
- Weight: 8.4 lbs max. with beacon
- Locatable Acoustic Beacon
Voice & Data Recorder (VADR™)

• Multi-Function Crash Survivable System
• Design is based upon our successful Crash Survivable Memory Unit (CSMU), which is now in service on many types of aircraft around the world.
• No Scheduled Maintenance
• MTBF of over 20,000 Hours (at +40°C., continuous operation).
• Supports two level maintenance
• Designed for both civil and military applications, and is inter-changeable with existing CSMU’s.
• SI Funded Development
• In production
• Available on GSA Schedule
VADR™ Characteristics

• Connects directly to aircraft intercom systems and cockpit area microphone

• No special ground support equipment required

• Bus data input via RS-422, ARINC-717 and MIL-STD-1553 (Growth for ARINC-429)

• Digital Solid State EEPROM Storage medium

• Recording Duration
 – Voice and Cockpit Audio: one to four channels, 30 minutes (minimum) each channel
 – Data: 25 hours, minimum
VADR™ Characteristics

• Memory Capacity: 10 to 36 Mbytes (customer selectable); near term growth to 112 Mbytes

• Recorded Audio Frequency Response:
 – Three channels from 150 to 3,500 Hz and one channel from 150 to 6,000 Hz
 – High fidelity audio recording - harmonic distortion: 6% at 1 kHz; recorded signal to noise ratio: 35 dB; dynamic range: 60 dB

• Analog Rotor Tachometer Input

• Input Power: +28 VDC, <9 Watts

• Hard Mountable; No cooling air required

• Underwater Locatable Acoustic Beacon available

• Cockpit Control Panel and Area Microphone available.
Model 3253 VADR™

Smallest, Lowest Weight CVR and FDR Available
Model 3255 IDARS™

- Meets FAA TSO-C123/C124 and EUROCAE ED-55 & ED-56A
- Data Input: ARINC 429, RS-422 & ARINC 717
- Connects Directly to Audio Systems
- Recording Time
 - Audio: 4 channels, each 30 min.
 - Data: 25 hours
- Power: 28 VDC
- Size: 1/2 ATR ARINC 404
- Weight: <15 lbs
- Capabilities:
 - Analog, discrete, 1553 data acquisition
 - Data Processing & Recording
 - Data Transfer System Interface
Integrated Data Acquisition Recording System
(IDARS™)

• Multi-Function Data Acquisition, Processing, Recording and Crash Survivable System

• Design based on the successful VADR™ and SFDR Programs

• Selected for the JPATS and C-XX aircraft

• Provides multi-use as a:
 – Cockpit Voice Recorder (CVR) only
 – Flight Data Recorder (FDR) only
 – Combined CVR and FDR
 – Can include acquisition and processing for analog, discrete and digital signals
 – Extensive growth capability, including HUMS
Model 3255 IDARS™

• Offers full functionality of current SAU
 – Ada software
 – Motorola 68360 processor
 – On-board memory for ASIP, ENSIP, BIT, and Maintenance functions
 – Full analog capacity
 – ARINC-429, MIL-STD-1553, RS-422 interfaces

• Includes Voice and Data Recorder (VADR™)
 – Common Crash Protected Memory (CPM) proven in VADR™ applications
 – Offers voice recording growth to 2 hours per channel

• All packaged in a single LRU / WRA
Model 3255 IDARS™ Cutaway

- ARINC 404 1/2 ATR Chassis
- CPM I/O Controller
- Voice Processing
- Backplane
- Connector
- Flexible Interconnect
- Underwater Locator Beacon (Option)
- Smart Analog Subsystem CCA
- Crash Protected Memory (CPM)
- Digital Data Processing Unit
New Data Transfer System

- **Next Generation DTS:**
 - Retains current DTM form factor
 - Processor managed DTM receptable
 - 10 - 140 Mbyte DTM today, 1 Gbyte DTM by 1998

- **Status**
 - Four production contracts received in 1993/1994
 - Flight-worthy hardware now and productionization funding received

- **Increased memory capacity and lower cost** (40 Mbyte DTM approximately same cost as current 1 Mbyte (DTM))

- **Software programmable receptable for easy modification/update**

- **Addresses new large memory capacity applications:**
 - Digital map/world DTA bases
 - Digital image recording
 - Maintenance databases
Data Transfer Module

- **Capacity:** 16K to 140 Mbyte
 - Growth to 1 Gbyte
- **Standard Serial Interface**
- **Size:** 6 in. x 3.3 in. x 0.75 in
- **Weight:** 0.75 pound
- **Reliability:** 78,000 hours
- **Environmental Performance:**
 - Temperature: -54 to +70°C.
 - Shock: 20G's
 - Vibration: 5G's
 - Crash Safety: 40G's
 - Humidity: 100%
Data Transfer Module Receptacle (DTMR)

- **DTMR Characteristics**
 - Receives data from SAU and IDARS
 - Stores data in memory cartridge
 - Memory capacities:
 - Supports 1-40 megabyte memory cartridges
 - Dimensions:
 - Height: 1.13 in
 - Width: 5.75 in
 - Length: 5.23 in
 - Weight: <1.0 lbs
Data Transfer Interface Unit (DTIU)

- **DTIU Characteristics**
 - Receives data via RS-422
 - Stores data in memory cartridge
 - 8 character display
 - User interface/data entry switches
 - Memory capacities:
 - Supports 1 Mbyte memory cartridge
 - Dimensions:
 - Height: 3.0 in (7.6 cm)
 - Width: 5.0 in (12.7 cm)
 - Length: 7.5 in (19.1 cm)
 - Weight: 6.0 lbs (13.2 kg)
 - Power: 12 watts (28 VDC)
SFDR Configuration 1988 - Present

1553 Analog Discrete

Data Transfer
Interface Unit
(Optional)
VADR™ Configuration 1995 - Present

- MIL-STD 1553 Bus
- Rotor Tachometer
- Pilot Audio
- Co-Pilot Audio
- Sensor Operator Audio
- Cockpit Area Microphone

U.S. Coast Guard: HH-60J & HH-65
U.S. Navy: VH-3 & VH-60
2nd VADR™ Configuration 1996 - Present

U. S. Navy: Common Flight Incident Recorder
C-2, C-130T, UP-3 & VP-3
IDARS Configuration 1997

Signal Acquisition Unit

Integrated Data Acquisition and Recording System (IDARS) (Crash Survivable Voice and Data)
Aircrew Tactical Training System
Aircrew Tactical Training System

- Low Cost, Self Contained Training System

- Core System in Production for USAF & USN
 - Embedded Growth Capability
 - Airborne Element - Data Acquisition Unit
 - Ground Element - Graphical Replay Animation System
 - System Architecture Supports Unlimited Aircraft Types

- ACMI - like Debriefing / Training

- Applicable To All Smiths Industries Flight Data Recorder Equipped Aircraft
Data Acquisition Unit

- Data Acquisition Unit Compliant with
 - FAA TSO-C123 and EUROCAE ED-56 for CVR Performance and Crash Survivability
 - FAA TSO-C124, EUROCAE ED-55, SAE AS 8039 and MIL-STD-2124 for FDR Performance and Crash Survivability
- Connects Directly to
 - Aircraft ICS
 - MIL-STD-1553 Data Bus as a Bus Monitor
- No Peculiar Ground Support Equip. Req’d.
- Memory Capacity: 36 Mbytes; Near Term Growth to 72 and 144 Mbytes
- Hard Mountable in High Vibration Areas
Key Display Capabilities

- Color Presentation
- Overall Scene Viewed From Any Azimuth, Elevation, Proximity
 - True Perspective Presentation
 - View From Pilot’s Perspective
 - Zoom In / Zoom Out
 - Freeze Frame and Forward / Reverse Viewing
- Numerical Data or Cockpit Instrument Overlays
- Video Cassette recording of ATTS Replay
- Provides for AVTR Projection Potential
 - With growth capacity to integrate video with ATTS Replay
ATTS Direct Benefits

• More Effective Training - Augments ACMI Training
• Increased Pilot Proficiency by Immediate Review of Mission Just Completed (FOQUA)
• Promotes Increased Pilot Safety Awareness
• Available Daily in Flying Unit
 • 80% of Training is Done Here
• Supplements / Reinforces Formal Training
• **Bonus** - Aircraft Maintenance
• **Bonus** - Accident Investigations
• **Bonus** - Individual Aircraft Tracking