

MAID (Massive Array of Idle Disks) Meeting the Long-Term Data Challenge

Dr. Aloke Guha

CTO, COPAN Systems 2605 Trade Center Drive, Ste D Longmont, CO 80503

Email: aloke.guha@copansys.com

Phone: (303) 827 2500 FAX: (303) 827 2504

Presented at the THIC Meeting at the National Center for Atmospheric Research 1850 Table Mesa Drive, Boulder CO 80305-5602

June 29, 2004

Traditional Storage Hierarchy

- Fibre Channel
- \$30-\$100/GB
- 15%
- ms
- RAID

- \$0.75 \$3.5/GB
- 85%
- 100s TB PB
- sec min . . . hrs

Offline Tape

Today's Storage Hierarchy

- Bulk of data stays on tape
- Bulk of data is unprotected
- Poor recall/restore performance

Backup/Migrate

Recover/Restore

Primary Disk

- Fibre Channel
- \$30-\$100/GB
- 10%
- ms
- RAID

Secondary Disk

- SATA
- \$5-\$15/GB
- 5%
- ms
- RAID

NearlineTape

- \$0.75 \$3.5/GB
- 100s TB PB
- 80%
- sec min . . . hrs

Information Management Complexity

- Frequent Data Movement
- Physical tape handling

- Network, Server Utilization
- CAPEX, Labor Cost

Application-Driven Approach to Storage

Secondary Storage Needs

- I/O: Sequential or Predictable Access
- Performance: Mbytes/sec, not IOPs
- Latency: msecs secs

Design Guidelines

- No need for large RAM cache
- No need to access all data at all time
- No need for non-blocking interconnect
- High Capacity/Bandwidth ratio
- Data Availability/Integrity
- Data Retention
- Serviceability

MAID: Power-Managed Disks

- Large # power-managed disks
 - > 50% drives powered OFF*
 - Power-cycling by policy
 - Defined in SNIA
- Scale, Cost, Service Life
- Lower Cost/Drive
 - 1/4 1/3 of typical RAID systems
 - Lower management cost
- Extending MAID
 - Performance and scale
 - Reliability
 - Cost

*SNIA ILM TWG Definition

Refers to a storage system comprising a very large array of disk drives where a majority of the drives are powered off. The goal of a MAID storage system is to reduce the energy consumed by a large-scale storage array while increasing storage density and maintaining performance similar to conventional disk arrays or tape libraries.

Extending MAID: Scalable Architecture

Extending MAID: Power-Managed RAID™

- Data protection with only subset of drives powered in RAID group
- Number of drives powered dictated by application needs
- Multiple options on data organization to support application

Increased Disk and System Reliability

- Effective drive service life
 - Increases with decreasing duty ratio*
- Increases Data Reliability
- Explicitly manage start stops
 - ≤ 50K over service life
 - Match to application need
- Use disk density for availability
 - Spares to replenish failed drives
 - Rebuild data transparently
 - Data Revitalization for Long-Term Data

Extending MAID: Data Reliability

- Device health monitoring
- Proactive data management: closed-loop control
- Revitalize data on disk for long-term data retention
- System data integrity mechanisms

Filling the Performance Gap

- Fraction of data on-line: ~10X tape
- Design: RAID processing, Interconnect Bandwidth, Disk Cache

Exploiting Disk Performance: Data Rate

- Disk Drive bandwidth
 - 40 MBs+ media; 150 MBs SATA interface
- Power-managed RAID in shelf
 - Bandwidth increases with stripe size
 - I/O rate increases with block size
- Aggregation Benefits
 - Multiple streams/shelf
 - Multiple shelves
- Results
 - 90 MBs/single stream uncompressed/shelf
 - Over 720 MBs for 8-shelf system
 - Further Improvements: Tuning, Compression

Exploiting Disk Performance: Access Time

- Access Time: 10X better than tape
 - Powered ON Drive: access time is in ms
 - Powered OFF Drive: 6s spin-up time, 10s data access

Random Access of File/Drive: uncompressed 100 MB							
9940B TAPE: streaming @ 30MB/sec							
Load 18 sec		Ave. Time to 1st Byte* 41 sec				Unload 18 sec	Total: 80 sec
SATA 7200 RPM Disk: streaming @ 40 MB/sec – increases with RAID							
ms-6 sec	Ave. Time to 1st Byte 0.1 sec	File Xfer 2.5 sec	Spin down 0.1 sec	Total (power-off AND cache miss): 8.7 sec* Total (power-on OR disk cache): 2.7 sec			
*Ave. time to first byte on tape depends on location of file (0 - 90 s)							

Simplifying Information Management

- CAPEX
- Performance
- Data Protection, Longevity

- Minimize Data Movement
- All Data Accessible All Time
- Reduced Management Cost

First Commercial MAID: Revolution 200T

8 shelves, 8 canisters each, 14 drives each

896 drives

224 TB in a single rack! (uncompressed)

Performance 2.4TB / HR

~22TB/sq. ft.

Purpose Built Architecture

- Optimized cost, density, performance and reliability
- Spin disks only when necessary
- Performance for bandwidth, not IOPS

Enterprise Reliability

- Long term reliability with SATA
- Validation and revitalization of data
- RAID protected

Conclusions

- MAID: exploits best of disk and tape
- Extensions meet secondary storage needs
 - Capacity and Cost
 - Reliability: Power-Managed RAID
 - Performance: Bandwidth, Access Time
 - Serviceability
 - Retention
- Filling the Gap in the Storage Hierarchy
- Simplifying Long-Term Data Management