The Challenges of Magnetic Recording on Tape for Terabyte Capacities

Richard H. Dee
Storage Technology Corporation
1 StorageTek Drive, Louisville, Colorado 80028-4274
Phone:+1-303-673-3976 FAX: +1-303-673-8406
E-mail: richard_dee@storagetek.com

Presented at the THIC Meeting at the National Center for Atmospheric Research
Boulder CO 80305-5602
June 11-12, 2002
Capacity and Data Rates

\[\text{Capacity} = \frac{N b L \varepsilon}{8} \]

\[\text{DataRate} = \frac{n b V \varepsilon}{8} \]

\(N = \) number of tracks, \(b = \) bit density, \(L = \) length of tape,

\(\varepsilon = \) efficiency, \(n = \) number of channels, \(V = \) tape speed
Capacity and Data Rates (alt.)

\[
\text{Capacity} = \frac{(tpi)(bpi)WL\varepsilon}{8}
\]

\[
\text{DataRate} = \frac{n(bpi)V\varepsilon}{8}
\]

\(tpi\) = track density, \(bpi\) = bit density, \(L\) = length of tape,
\(W\) = width of tape, \(\varepsilon\) = efficiency, \(n\) = number of channels,
\(V\) = tape speed
TeraByte Operating Points

½" wide tape, 3480/9940 form factor

<table>
<thead>
<tr>
<th>Capacity (TB)</th>
<th>0.5</th>
<th>0.5</th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>5</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate (MB/sec)</td>
<td>60</td>
<td>120</td>
<td>110</td>
<td>220</td>
<td>150</td>
<td>300</td>
<td>280</td>
<td>559</td>
</tr>
<tr>
<td>No. of Pll Data Channels, n</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>No. of Data Tracks, N</td>
<td>768</td>
<td>768</td>
<td>1344</td>
<td>1344</td>
<td>4750</td>
<td>4750</td>
<td>4140</td>
<td>4140</td>
</tr>
<tr>
<td>Trk. Pitch (μm)</td>
<td>14.0</td>
<td>14.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Channel Pitch, c_p (μm)</td>
<td>109</td>
<td>109</td>
<td>55</td>
<td>55</td>
<td>109</td>
<td>55</td>
<td>109</td>
<td>55</td>
</tr>
<tr>
<td>Rd. Track Width (μm)</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Tape Speed, V (m/s)</td>
<td>4.8</td>
<td>4.8</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Bit Density (kbpi)</td>
<td>224</td>
<td>224</td>
<td>248</td>
<td>248</td>
<td>298</td>
<td>298</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Track Density (tpi)</td>
<td>1812</td>
<td>1812</td>
<td>3172</td>
<td>3172</td>
<td>11211</td>
<td>11211</td>
<td>9771</td>
<td>9771</td>
</tr>
<tr>
<td>Areal Density (Gb/in²)</td>
<td>0.41</td>
<td>0.41</td>
<td>0.79</td>
<td>0.79</td>
<td>3.35</td>
<td>3.35</td>
<td>4.89</td>
<td>4.89</td>
</tr>
<tr>
<td>Bit Cell (nm)</td>
<td>114</td>
<td>114</td>
<td>103</td>
<td>103</td>
<td>85</td>
<td>85</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Bit Cell (ns)</td>
<td>23.7</td>
<td>23.7</td>
<td>12.9</td>
<td>12.9</td>
<td>9.5</td>
<td>9.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Write Eq. Pulse (nS)</td>
<td>9.5</td>
<td>9.5</td>
<td>5.2</td>
<td>5.2</td>
<td>3.8</td>
<td>3.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tape Length (m)</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Write Time per Cart. (min)</td>
<td>144</td>
<td>72</td>
<td>152</td>
<td>76</td>
<td>550</td>
<td>275</td>
<td>604</td>
<td>302</td>
</tr>
</tbody>
</table>
Block Diagram of a Magnetic Recording Channel

Data → Formatting, ECC & Coding → Write Equalizer → Write Driver

Decoding, ECC & De-format → Detector → Read Equalizer → PreAmp & AGC

Write Head → Tape Media

Read Head → Track Following Servo

Tape Guiding and Speed Control
Digital Magnetic Recording

Data: 1 0 1 1 1 0 1

Write Current: I_w, $-I_w$

Magnetic Recording

Read Voltage

Clock

Recovered Data: 1 0 1 1 1 0 1

Linear Density Trend

- **MPX/Metal 2700**
- **MP4 2400 (Oe)?**
- **MP2 1850 (Oe)**
- **MP1 1650 (Oe)**
- **CrO₂ 650**
- **Fe₂O₃ 350 (Oe)**

Year:
- 1970
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010

Source: trends.xls

Recording Theory

Transition from \(+M_r\) to \(-M_r\) over a distance, \(a\)

\[
M(x) = \frac{2M_r}{\pi} \tan^{-1}\left(\frac{x}{a}\right)
\]

\[
a = 2 \left[\left(\frac{2}{\sqrt{3}}\right)\left(\frac{M_r \delta}{H_c}\right)\left(d + \frac{\delta}{2}\right)\right]^{1/2}
\]

All these parameters are scaling down

6/12/2002
Tape Media Section Diagram

Backcoat

Substrate

Underlayer

Magnetic Layer
Particulate Tape Media Progression

MP1
Single Layer

MP2
Dual Coat

MPX/BaFe
Thin Mag. Layer
Smaller Particles

Magnetic Layer
Non-Magnetic Layer (smoothing)
Base Film
Recording Theory

Transition from \(+M_r \) to \(-M_r \) over a distance, \(a \)

\[
M(x) = \frac{2M_r}{\pi} \tan^{-1} \left(\frac{x}{a} \right)
\]

\[
a = 2 \left[\frac{2}{\sqrt{3}} \left(\frac{M_r \delta}{H_c} \right) \left(d + \frac{\delta}{2} \right) \right]^{1/2}
\]

All these parameters are scaling down
Recording Theory (2)

Spacing Loss due to Head-Medium spacing, d

$$\text{Loss} = -55 \left(\frac{d}{\lambda} \right)$$

Signal to Noise Ratio depends on the number of particles being read

$$\text{SNR} = \frac{nW\lambda^2}{6}$$
Areal Density Limit Calculation

\[A_{\text{lim}} = t^{\frac{1}{2}} \left(\frac{2 p \text{SNR}}{3} \right)^{\frac{1}{2}} \]

\(t = \text{track density, } p = \text{particle density,} \)
\(\text{SNR} = \text{Signal-to-Noise Ratio} \)

Areal Density Limit Calculation (Gbit/sq.in) (2)

(8000 tpi)

<table>
<thead>
<tr>
<th>SNR(dB)</th>
<th>10^{16}</th>
<th>10^{17}</th>
<th>10^{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.2</td>
<td>10.4</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>5.2</td>
<td>16.5</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>8.2</td>
<td>26.2</td>
<td>82</td>
</tr>
</tbody>
</table>
TeraByte Operating Points

1/2" wide tape, 3480/9940 form factor

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>0.5</th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>5</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (TB)</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Data Rate (MB/sec)</td>
<td>60</td>
<td>120</td>
<td>110</td>
<td>220</td>
<td>150</td>
<td>300</td>
<td>280</td>
<td>559</td>
</tr>
<tr>
<td>No. of Pll Data Channels, n</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>No. of Data Tracks, N</td>
<td>768</td>
<td>768</td>
<td>1344</td>
<td>1344</td>
<td>4750</td>
<td>4750</td>
<td>4140</td>
<td>4140</td>
</tr>
<tr>
<td>Trk. Pitch (µm)</td>
<td>14.0</td>
<td>14.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Channel Pitch, c_p (µm)</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>Rd. Track Width (µm)</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Tape Speed, V (m/s)</td>
<td>4.8</td>
<td>4.8</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Bit Density (kbpi)</td>
<td>224</td>
<td>224</td>
<td>248</td>
<td>248</td>
<td>298</td>
<td>298</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Track Density (tpi)</td>
<td>1812</td>
<td>1812</td>
<td>3172</td>
<td>3172</td>
<td>11211</td>
<td>11211</td>
<td>9771</td>
<td>9771</td>
</tr>
<tr>
<td>Areal Density (Gb/in^2)</td>
<td>0.41</td>
<td>0.41</td>
<td>0.79</td>
<td>0.79</td>
<td>3.35</td>
<td>3.35</td>
<td>4.89</td>
<td>4.89</td>
</tr>
<tr>
<td>Bit Cell (nm)</td>
<td>114</td>
<td>114</td>
<td>103</td>
<td>103</td>
<td>85</td>
<td>85</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Bit Cell (ns)</td>
<td>23.7</td>
<td>23.7</td>
<td>12.9</td>
<td>12.9</td>
<td>9.5</td>
<td>9.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Write Eq. Pulse (nS)</td>
<td>9.5</td>
<td>9.5</td>
<td>5.2</td>
<td>5.2</td>
<td>3.8</td>
<td>3.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tape Length (m)</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Write Time per Cart. (min)</td>
<td>144</td>
<td>72</td>
<td>152</td>
<td>76</td>
<td>550</td>
<td>275</td>
<td>604</td>
<td>302</td>
</tr>
</tbody>
</table>
Head Technology
Thin Film Write Head Array
Media Stability Consequences

\[D = \frac{2(OT)LWVb^2 \varepsilon^2}{64Cc_p m_c} \]

OT Offtrack allowance

\(c_p\) channel pitch

\(m_c\) media stability coeff.
Data Rate – Capacity Trade Off

Data Rate/Capacity Tradeoff
(10m/s, CP=50µm, 200kbpi, 12mm tape, 10% OT)

Media Instability

NSIC 1998

www.StorageTek.com
TeraByte Operating Points

½" wide tape, 3480/9940 form factor

<table>
<thead>
<tr>
<th>Capacity (TB)</th>
<th>0.5</th>
<th>0.5</th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>5</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate (MB/sec)</td>
<td>60</td>
<td>120</td>
<td>110</td>
<td>220</td>
<td>150</td>
<td>300</td>
<td>280</td>
<td>559</td>
</tr>
<tr>
<td>No. of Pli Data Channels, n</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>No. of Data Tracks, N</td>
<td>768</td>
<td>768</td>
<td>1344</td>
<td>1344</td>
<td>4750</td>
<td>4750</td>
<td>4140</td>
<td>4140</td>
</tr>
<tr>
<td>Trk. Pitch (µm)</td>
<td>14.0</td>
<td>14.0</td>
<td>8.0</td>
<td>8.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Channel Pitch, (c_p) (µm)</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>Rd. Track Width (µm)</td>
<td>7.0</td>
<td>7.0</td>
<td>4.0</td>
<td>4.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Tape Speed, (V) (m/s)</td>
<td>4.8</td>
<td>4.8</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Bit Density (kbpi)</td>
<td>224</td>
<td>224</td>
<td>248</td>
<td>248</td>
<td>298</td>
<td>298</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Track Density (tpi)</td>
<td>1812</td>
<td>1812</td>
<td>3172</td>
<td>3172</td>
<td>11211</td>
<td>11211</td>
<td>9771</td>
<td>9771</td>
</tr>
<tr>
<td>Areal Density (Gb/in²)</td>
<td>0.41</td>
<td>0.41</td>
<td>0.79</td>
<td>0.79</td>
<td>3.35</td>
<td>3.35</td>
<td>4.89</td>
<td>4.89</td>
</tr>
<tr>
<td>Bit Cell (nm)</td>
<td>114</td>
<td>114</td>
<td>103</td>
<td>103</td>
<td>85</td>
<td>85</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Bit Cell (ns)</td>
<td>23.7</td>
<td>23.7</td>
<td>12.9</td>
<td>12.9</td>
<td>9.5</td>
<td>9.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Write Eq. Pulse (nS)</td>
<td>9.5</td>
<td>9.5</td>
<td>5.2</td>
<td>5.2</td>
<td>3.8</td>
<td>3.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tape Length (m)</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>865</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1400</td>
</tr>
<tr>
<td>Write Time per Cart. (min)</td>
<td>144</td>
<td>72</td>
<td>152</td>
<td>76</td>
<td>550</td>
<td>275</td>
<td>604</td>
<td>302</td>
</tr>
</tbody>
</table>

Media Coercivity Time Dependence

![Graph showing Media Coercivity vs Time Scale](image)
Magnetic Recording with Short Pulses (MP Tape)

- **Normalized Output**
- **Efficiency**
- **Efficiency***

![Graph showing normalized output and efficiency as a function of pulse length.](Iw vs pulse.xls)
Summary

- Medium has primary impact on areal density growth
- $M_r\delta$ has to be reduced (as it was in disk)
- Side-by-side head channel architecture sets up tradeoffs
- Head technology in good shape (StorageTek Tour)!
- Limit for MP tape $\sim10\text{Gb/in}^2$
 (Careful!! Disk prediction in 1997 36Gb/in2)
- Tape wins on volumetric efficiency and $$/\text{GByte}$
- Tape not near any fundamental limits at this time