Using Track-Following Servos on Next Generation Tape Drives

THIC Meeting on July 13 & 14, 1999 in Denver, CO

Randy Glissmann, Business Development Manager
Fujitsu Computer Products of America
1751 South Fordham Street, Suite 100
Longmont, CO 80503
Phone +1-303-682-6555, FAX +1-303-682-6401
rglissmann@intellistor.com
www.fcpa.com
Fujitsu Limited

- Among the top five largest computer companies
 - Japan - Fujitsu Ltd
 - USA - Amdahl
 - Europe - ICL Group
- More than $37.7 billion in sales
- Employs 180,000 people
- Operations in over 100 countries
Linear Tape Recording Basics

Tape Movement

Recording Head

- Write Element
- Read Element
Needed Improvements in Tape Technology

- Greater media area
 - Thinner tape
- Higher bit density
 - Higher coercivity media
 - Improved modulation codes
 - "Predictive" signal decoding
- Higher track density
 - Servo Track-following
Track Density Comparison

Large Potential Capacity Growth Enabled by Increasing Track Density
Challenge to Increasing Track Density: Vertical Tape Movement

Recorded Track Below Read Head

Poor Data Recovery

- Write Element
- Read Element
Track-following Technology

- **Write Element**
- **Read Element**
- **Servo Element**

Head Moves to Follow Servo Track
3590 Magstar™

Fujitsu M8100
- 10GB Capacity
- 13.5 MB/sec

3 Redundant Servo Tracks

Magstar is a trademark of IBM
High Performance Tape Format

- Announced November '97
 - Formed by HP, IBM, and Seagate
- Open format specification
 - Compliance tested
- Evolutionary technical roadmap
 - Products available this year

More information:
- www.lto-technology.com
Linear Tape Open

Ultrium Roadmap

<table>
<thead>
<tr>
<th>Generation</th>
<th>Capacity Native</th>
<th>Capacity Compressed*</th>
<th>Transfer Rate Native</th>
<th>Transfer Rate Compressed*</th>
<th>Recording Method</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation 1</td>
<td>100GB</td>
<td>200GB</td>
<td>10-20MB/s</td>
<td>20-40MB/s</td>
<td>RLL 1, 7</td>
<td>MP</td>
</tr>
<tr>
<td>Generation 2</td>
<td>200GB</td>
<td>400GB</td>
<td>20-40MB/s</td>
<td>40-80MB/s</td>
<td>PRML</td>
<td>MP</td>
</tr>
<tr>
<td>Generation 3</td>
<td>400GB</td>
<td>800GB</td>
<td>40-80MB/s</td>
<td>80-160MB/s</td>
<td>PRML</td>
<td>MP</td>
</tr>
<tr>
<td>Generation 4</td>
<td>800GB</td>
<td>1.6TB</td>
<td>80-160MB/s</td>
<td>160-320MB/s</td>
<td>PRML</td>
<td>Thin Film</td>
</tr>
</tbody>
</table>

*Assumes 2:1 compression ratio
Linear Tape Open

Ultrium
- 384 tracks
- Time-base Servo
- Powerful ECC
- Dynamic Rewrite
- Cartridge Memory

2 Redundant Servo Tracks
SuperDLT

SDLT

- 100GB Capacity
- Revolutionary Technical Roadmap
 - Pivoting Optical Servo
 - PRML
 - Reflective-bonded Media
- ? Servo Redundancy
- More information:
 - www.dlttape.com
Choosing Next Generation Tape

Look for:

- Most tape area
 - Widest and longest tape

- Track-following Servo
 - Redundant servo sensors

- Evolutionary Technical Roadmap
 - Lower risk of reliability problems

- Multiple manufacturers
 - Ensure competitive pricing