TeraStor's Near-Field Recording

Gordon Knight TeraStor Corporation 2310 North First Street San Jose CA 95131

phone +1-408-914-4000
e-mail gknight@terastor.com

Presented at the THIC meeting in San Mateo CA 7/22-23/98

TeraStor Profile

- TeraStor Founded Dec. 1995, initial funding Feb. 1996
- 140 employees, 100,000 sq. ft. facility in San Jose
- Key Executives:

Gordon Knight*

Hossein Mogadam

Bill Dobbin*

Amyl Ahola

Rick Wilmer

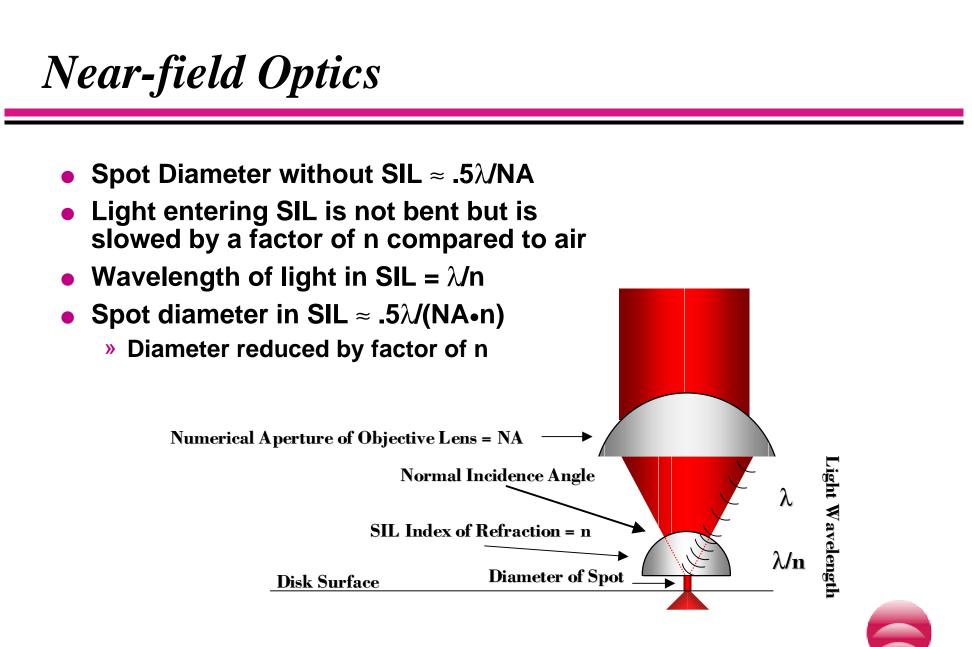
Richard Walker

Louis Llamas

Skip Kilsdonk

- Jim McCoy* CEO (founder of Maxtor, co-founder of Quantum)
 - CTO (founder of Maxoptix & Optimem)
 - VP (founding CFO of Maxtor)
 - Pres, COO (past CEO LMSI, WangDAT, VP Seagate)
 - Sr. VP Eng (former CTO of Seagate)
 - VP Ops. (former VP of operations, Seagate)
 - VP Mktg (former worldwide marketing manager, HP)
 - VP Sales (former VP Western Digital, Seagate)
 - VP (former VP Maxtor)

* founder



Page 2

Near Field Recording - Technology Evolution

- Optical flying head/First surface recording
 - » Basic technology developed by Digital.
 - Extensive patent portfolio (26 patents)
 - » Patents acquired by Quantum as part of their acquisition of the Digital storage business
 - » Co-exclusive patent rights granted to TeraStor by Quantum
- Solid Immersion Lens (SIL) technology
 - » Basic technology developed and patented at Stanford University
 - » Exclusive patent rights granted to TeraStor by Stanford

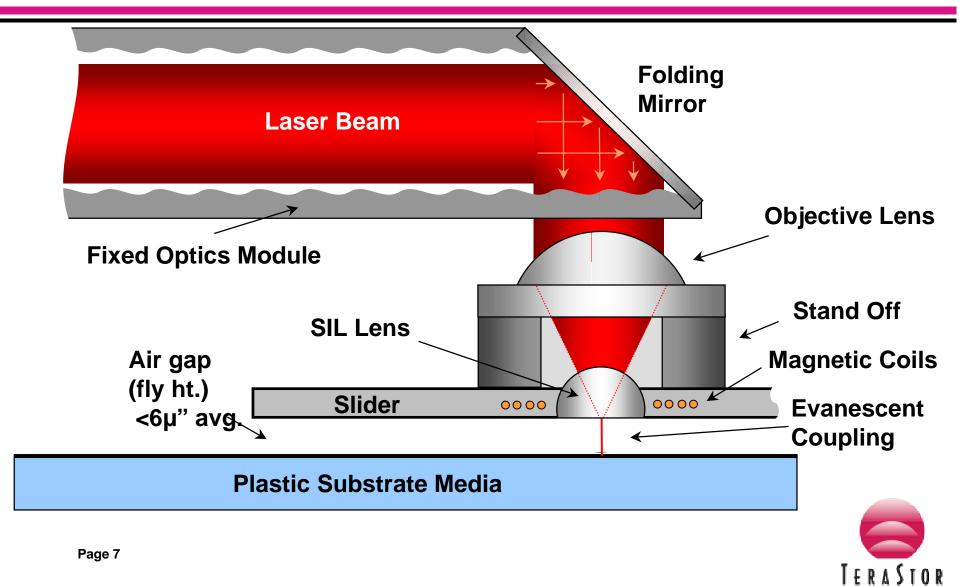
TERAS

Evanescent Coupling

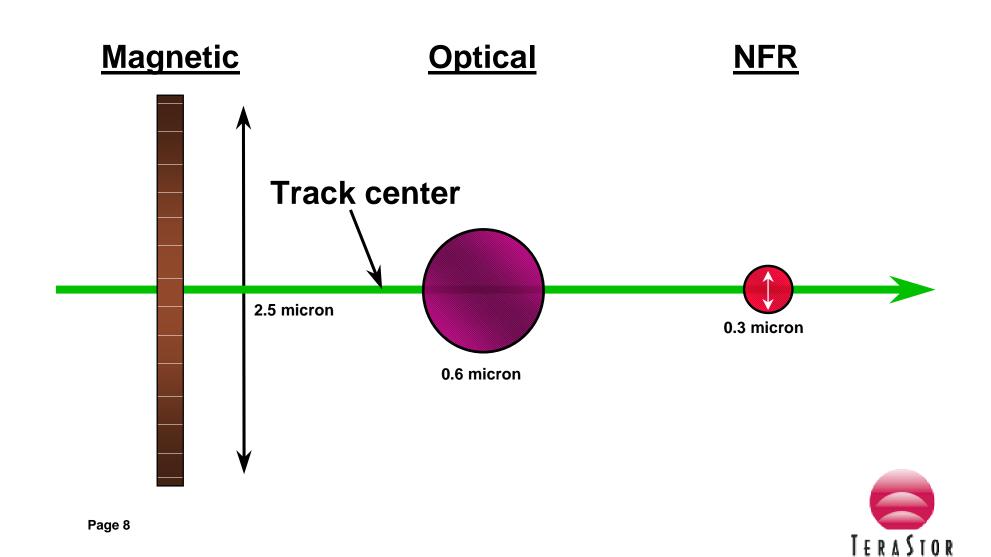
- Provides energy transfer from the SIL to the surface of the media
 - » Unlike conventional magneto-optical products, the laser is not focused on the surface of the media, instead it is focused at the bottom of the SIL
- Well understood from Near-field Scanning Optical Microscopy
- Allows image of small spot inside SIL to be pulled to the surface of the media.

NFR Components

• Solid Immersion Lens

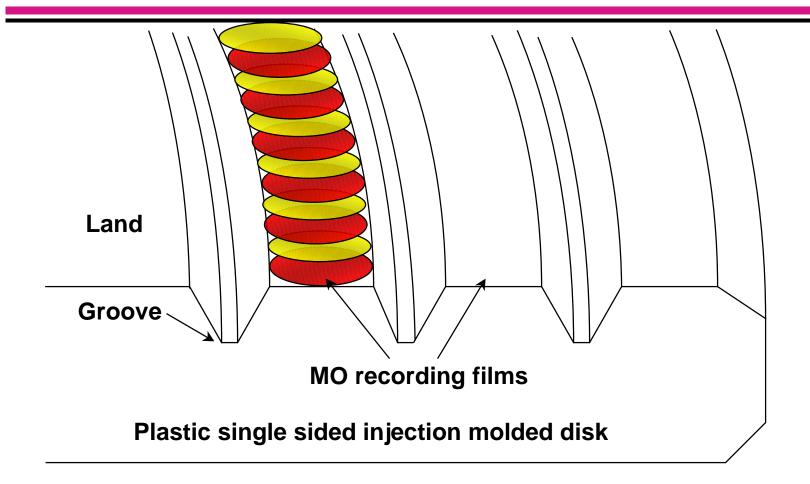

- » Based on liquid immersion microscopy
- » Allows Numerical Aperture of much greater than 1 by using high index of refraction material
- » Shape of the SIL allow for tighter focus of light spot

• First Surface Recording


- » Places recording films in near-field proximity to the head
- Flying Optical Head
 - » Provides tight focus tolerances within the near-field and eliminates focus servo found in conventional magnetooptical products
- Crescent Recording
 - » Allows for bit densities of > 200,000 bits per inch with SIL

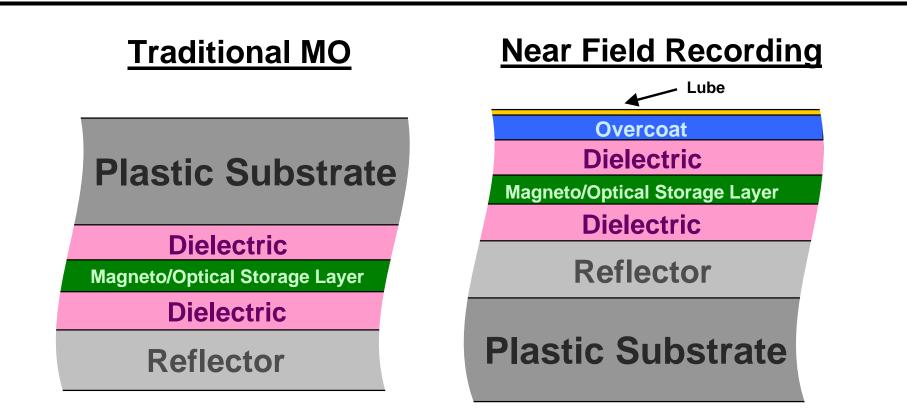
Architecture of TeraStor's Near-Field Recording Technology

Recording Area Compared



NFR Media

- Uses conventional MO recording films
- Stamped plastic substrate and first surface recording allows media costs to be competitive with tape
- Vertical magnetic domains allow for smaller spots than magnetic recording
- Proven domain stability, no super-paramagnetic effects
 - » Magnetic recording domains become unstable at room temperature somewhere between 20Gb/in² and 40Gb/in²
 - » Magneto-optical media has been proven stable at densities beyond the superparamagnetic "limit" (AT&T 1992)
- Long shelf life approaching that of conventional magnetooptical products
- Infinite rewrite passes, unlike phase change media



TeraStor Disk Structure

TeraStor Disk Structure

The Two Stage Servo

- Combines movements of a primary actuator and laser scanning
- Radial run out taken out with rotary actuator
- Instantaneous near track seeks with galvanometer mirror
- High bandwidth micro-mirror galvanometer allows for order of magnitude increase in track densities over magnetic recording
- Improved track acquisition capability
- Improved shock resilience

Technology Comparison

	Recording Mechanism	Cyclability	Data Rate	Areal Density
Near-Field MO	Vertical Magnetic Media	Infinite	>160 Mb/sec	> 10 Gb/in ² today => >200 Gb/in ²
Far Field MO	Vertical Magnetic Media	Infinite	~48 Mb/sec	~ 2 Gb/in ² today => <20 Gb/in ²
Phase Change	Amorphous Crystaline Molecular change	10,000 to 500,000 cycles	~ 24 Mb/sec today (slow process)	~ 2 Gb/in ² today => <15 Gb/in ²
Magnetic	In-plane Magnetic Media	Infinite	> 200 Mb/sec today	> 4 Gb/in ² today => < 40 Gb/in ²

Optical Comparisons

	Conventional*	Near-Field	Blue Laser	Blue laser
	Magneto-Optical	Magneto-Optical	Conventional*	Near-Field
Laser Wavelength	685 nm	685 nm	410nm	410nm
Numerical Aperture	0.65	0.65	0.7	0.33
Index of refraction of SIL	n/a	2	n/a	3**
Potential Spot Size	0.53 micron	0.26 micron	0.29 micron	.07 micron
Maximum Areal Density	4Gb/in ²	16Gb/in2	13Gb/in2	238Gb/in2
Conventional optics products include CD, DVD, ASMO, MO, and OAW			** SuperSIL shape	

TeraStor Product Highlights

- High capacity removable cartridge drive
 - » Announced 10GB, 20GB and future double sided family
 - » Removable NFR media
 - » Average seek times < 18ms.</p>
 - » Volume production Q1 1999
- Announced automation solutions coming from:
 - » ATL Products » Exabyte
 - » DISC » Spectra Logic
 - » Overland Data » Plasmon IDE
 - » Others to follow
- Storage Management software commitments from 17 UNIX, NT, and Novell backup and nearline application developers

TeraStor Partners

• Strategic Technology Partnerships:

- » Media
 - Imation
 - Tosoh
 - Maxell
- » Heads
 - Yamaha
 - Second source under negotiation
- » Electronics
 - Silicon Systems Inc (Texas Instruments)
 - Hitachi
- » Optics
 - Olympus

TeraStor Partners

• Contract Manufacturing Partnership

- » Mitsumi Cebu Philippines
- Drive Manufacturing and Marketing License
 - » Quantum
 - ensure multiple sources of competitive drives
 - create de-facto standard products

Conclusions

- Near-field recording with a Solid Immersion Lens combines the best advantages of magnetic and optical recording
 - » many components from HDD vendors
 - » Low cost plastic media
- Near-field recording is practical today
- Conventional far-field optical recording has fallen behind magnetic recording and cannot keep up (even for DVD-RAM, ASMO, and OAW)
- NFR technology can maintain a significant areal density advantage over magnetic recording for both fixed and removable media products

