
A Flexible Data Recorder Architecture

Abstract

01/25/97 Page 1

A Flexible Data Recorder Architecture
A system architecture for a low-cost digital data recorder is
described. The recorder is based on an Intel PC hardware platform
and the Windows 95 software environment. The hardware
architecture is based on Commercial-Off-The-Shelf components
with the exception of the physical interfaces to the recorder. This
architecture provides a low life cycle cost for the recorder and
offers a flexible migration path as newer and faster storage
peripherals become available. The software follows a distributed
process, object oriented architecture that easily supports the
addition of physical interfaces, transports, and analysis tools to the
recorder



A Flexible Data Recorder Architecture

Topics

01/25/97 Page 2

• Development goals

• System architecture

• Hardware architecture

• Software architecture

• Development challenges



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 3

• Requirements
• No calibration or complex periodic maintenance
• Low life-cycle cost
• Unattended operation
• Suitable for long term archive of data

• Design Goals
• Use commercial tape transports
• Scaleable architecture

• New transports
• New interfaces
• Faster bit rates

• User friendly
• Enhanced features



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 4

The recorder was developed initially for the Meteorological Satellite Ground Station market.
These satellites have telemetry links running in the range of 500 kbps to 2 Mbps.

At that time a set of requirements was formulated based on our experiences in designing
and building satellite ground stations and using the currently available recorders:

• No calibration or complex periodic maintenance - Many of our customers are in third
world countries with little infrastructure to support these activities.

• Low life-cycle cost - proprietary media for many recorders is expensive and not easily
procured in many countries.

• Unattended operation - ground stations acquire data around the clock and many run
unattended overnight.

• Capability to store all required information to process the telemetry data on the media -
in many systems ancillary data is required by the processing system when processing
the telemetry data. We wanted a way to record this data along with the telemetry for a
completely self contained archive.

A set of design goals was formulated in order to support making the recorder a viable
and supportable product:



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 5

• Use commercial tape transports and not to modify the transports in any way if
possible. We do not have the expertise to design and manufacture tape transports -
nor any desire to do so.

• Scaleable Architecture - to be competitive we must respond quickly to customer
requests for new technologies.

• Faster and bigger tape transports are being announced at regular intervals

• Newer storage technologies are becoming available - e.g. magneto-optical.

• Record data direct to disk.

• Handle serial data rates from 1 kbps to >30 Mbps

• In order to differentiate our product in the market place we felt we needed a unique,
powerful, flexible, and yet easy to use interface between the users and the recorder.

• A further differentiating factor would be to use the computer in the recorder to support
the addition of features to provide telemetry testing capability. We envisioned
telemetry data synthesis, telemetry analysis on the record in either real-time or on the
recorded data. We wished to provide data import and export in standard file formats
on floppy disk or other file structured media.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 6

The recorder architecture is based around a set of data transfer
buffers. These buffers are managed by software that allows
applications to use them to pass data to each other. These
buffers are used to support both the inter-process
communication and DMA to physical devices.

The hardware is designed to use these buffers for performing
I/O to the media and to telemetry equipment.

The software takes advantage of the buffers by allowing many
different applications to use the buffers to exchange data.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 7

The data transfer buffers architecture is a very powerful tool.
With it we can:

• Connect a Transport application to a PCM Interface application to
provide the functionality of a tape recorder.

• Connect two Transport applications to copy data between media.

• Connect the DOS File Interface application to a Transport
application and import or export PCM data in standard DOS file
format.

• Connect the Satellite Simulator application to a Transport
application and record synthesized satellite telemetry to tape.

• Connect the Satellite Simulator application to a PCM Interface
application and play synthesized satellite telemetry directly out the
PCM Interface.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 8

Recording PCM Data

PCM Interface TTL PCM In

SCSI-2 Adapter Transport

Start Source

IRIG Reader
or DOS Clock

64 kByte
Buffer

PCM Interface

Transport

Start Source

Buffer Full

Buffer Empty

Software

Software

Software

Stop Source

Stop Source

Manages

Controls

Controls

Uses

Connection Manager
DMA PCM data to buffer

DMA PCM data from buffer



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 9

Recording PCM data:
1. The PCM Interface application is started.
2. The Transport application is started.
3. A Data Path is established from the PCM Interface to the

Transport.
4. The user presses record - the Transport sends a Start Source

message to the Connection Manager, the Connection Manager
passes the message to the PCM Interface.

5. The PCM Interface places time tagged data in a buffer and
sends a Buffer Full message to the Transport.

6. The Transport writes the data to the media and sends a Buffer
Empty message to the PCM Interface.

7. Steps 5 and 6 are repeated until the user selects stop, the end
of media is reached, or an error occurs.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 10

Playing PCM Data

PCM Interface TTL PCM Out

SCSI-2 Adapter Transport

Start Dest

IRIG Reader
or DOS Clock

64 kByte
Buffer

PCM Interface

Transport

Start Dest

Buffer Full

Software

Software

Software

Stop Dest

Stop Dest

Manages

Controls

Controls

Uses

Buffer Empty

Connection Manager
DMA PCM data from buffer

DMA PCM data to buffer



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 11

Playing PCM data:
1. The PCM Interface application is started.
2. The Transport application is started.
3. A Data Path is established from the Transport to the PCM

Interface.
4. The user presses play - the Transport sends a Start Destination

message to the Connection Manager, the Connection Manager
passes the message to the PCM Interface.

5. The Transport reads the data from the media and sends a
Buffer Full message to the PCM Interface.

6. The PCM Interface outputs the data and then sends a Buffer
Empty message to the Transport.

7. Steps 5 and 6 are repeated until the user selects stop, the end
of the data is reached, or an error occurs.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 12

Media Structure
• The media is structured with each recording session being

a Data Set that contains a header followed by the PCM
data.

• The media has a directory of all Data Sets that is read and
displayed when the media is loaded.

• PCM data is recorded on the media in 64 kByte blocks.
Each block has an 8 byte header that contains the time
stamp of the last word in the block and the channel Id.

• The media structure is proprietary as there was no
standard at the time of development.

• Different transports all implement the same structure.



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 13

The recorder is based on a standard “Wintel” Personal
Computer platform.

• Microsoft Windows 95 operating system

• Intel 80x86 or Pentium processor

• Standard peripheral devices
(disk, mouse, keyboard, etc.)

This allows us to use low cost (high production volume)
personal computers, and provides for powerful software and
hardware development tools at reasonable prices.



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 14

IRIG Reader

PCM Interface
TTL PCM Out

TTL PCM In

Peripheral
Controller

ISA Bridge

ISA Bus

System Disk

Floppy Disk

CPU

PCI Bridge

16 Mbytes
Memory

PCI Bus
SCSI-2
Adapter

Video

Local Bus

Transport 1

Transport 2

External SCSI

SVGA Monitor

IRIG Time Code

SCSI Bus

Keyboard & Mouse

Serial & Parallel I/F

Disk Controller

Provided by PC platform

Third party components

Reach Technologies



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 15

All system components except the PCM Interface are Commercial
Off the Shelf (COTS). This reduces life cycle cost by allowing the
customer to replace components in the field from local suppliers.
In the portable version of the recorder there is no PCI bus, all
components shown on the PCI bus are located on the ISA bus.
The serial ports provide remote control capability and Datum 9700
IRIG Time Code Translator emulation functionality.
The parallel port allows a standard PC printer to be connected.
The printer is used to print tape content listings, tape labels, tape
case liners, and operations schedules.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 16

In order to meet the requirements and design goals described
we developed a distributed process architecture and
implemented it using object oriented rapid application
development (RAD) tools.

• One process (Windows application) per transport / interface.

• Inter-process communication (Connection Manager)

• Centralized event logging (Event Logger)

• Utilize Windows support for distributed objects (OLE/COM)
The implementation of the Inter-Process communications is
designed for the high speed transfer of large blocks of data. It
runs at over 100 Mbps on a 120 MHz Pentium system.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 17

Distributed Application Environment

Event LoggerConnection
Manager

Exabyte 8505
DEC DLT
Iomega Jaz Disk
Fixed Disk

DOS File I/F
Application

Transport
Applications

Interface
Applications

System Disk
Satellite Simulator
IRIG Decoding

DAT Transport
Application

DAT Transport

PCM Interface
Application

PCM Interface



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 18



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 19

Connection Manager

• Controls the assignment of connections (“Data Paths”)
between applications.

• Passes data transfer control messages between
applications.

• Graphically displays the recorder configuration.

• Controls the saving and restoring of test configurations -
saves the state of each application and the window positions
for later restoration.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 20

Event Logger

• Used by all applications to display and log events

• Provide consistent application behavior when running in
scheduled and remote mode. In these modes no user input
can be requested in error situations.

• Used to provide customer support when errors occur - users
can print the event log and fax it to us, or copy it to diskette
and email it to us for help with problems.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 21

Transport Applications

• Control the transport for Recording, Playing, and Positioning.

• One application for each transport in the recorder.

• Provide a consistent user interface and operational paradigm
across different transports.

• Provides user control of the data transfer.

• Allow the easy connection of external transports for
transcription.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 22

Interface Applications
• An interface is a source and/or destination of data.

• Can control physical devices.
(e.g. PCM Interface)

• Can control software data sources.
(e.g. Satellite Simulator)

• Can control software data destinations.
(e.g. IRIG decoder)

• May or may not provide user control of the data transfer.
• If an interface provides user control of the data exchange it

can connect to another interface.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 23

Implementing the recorder under the Microsoft Windows 95
operating system presented several challenges that had to be
overcome:

• Virtual Memory

• Interrupt Latency

• Inter-process Communications

• Low Bit Rates



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 24

Virtual Memory
Windows 95 is a virtual memory based operating system. This
means that any large memory blocks allocated by software are
likely not to be allocated from contiguous physical memory. This
has a large impact on the performance of our DMA transfers.
Windows uses a 4kByte page size and we use 4 kByte buffers. If
these buffers are allocated by Windows they may have up to 16
fragments. Each fragment requires a separate DMA transfer with
associated overhead. The overhead is caused by interrupt
servicing latency and programming the DMA controller for the next
transfer.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 25

Virtual Memory
To solve this problem we have implemented a device driver that
loads at system boot and allocates the buffer memory from system
physical memory before Windows 95 maps it. The driver performs
three functions:

• Provides physically contiguous memory for the DMA buffers

• Provides physical addresses for programming the DMA
controllers

• Maps the memory and provides virtual addresses to applications
to allow software access to the data.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 26

Interrupt Latency
Windows virtualizes all hardware devices to allow the
sharing of system resources between applications. This
introduces sometimes severe delays in interrupt servicing.
The solution was to design buffering into the PCM Interface
card to handle the latency, and to implement a Virtual Device
Driver (VxD) to reduce the interrupt latency.
We have implemented 64 kbits of buffering in the PCM
Interface that allows us to handle interrupt latencies of up to
6.4 mSec when running at 10 Mbps.
The VxD allows us to immediately program the DMA
controller upon receiving the DMA completion interrupt.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 27

Inter-process Communications
The standard Windows Inter-process communication features are
not suitable for high volume low latency data transfers.
In order to handle real time buffer exchange we had to implement
our own inter-process communications protocol. This
communications protocol is based on the large memory buffers
and windows messages passed between applications.
An application will receive a message from its partner application
telling it that a buffer is available for processing. When the
application has finished with the buffer it sends a message to the
partner application to let it know the buffer is ready.
This protocol is encapsulated in a RAD visual component that
makes development of new applications very fast and easy.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 28

Low Bit Rates
The recorder was initially developed for bit rates from 500 kbps to
2 Mbps. The architecture was optimized for data transfers at these
rates. The 64 kByte buffer size is a result of this.
We have since been requested to provide solutions for data rates
as low as 1 kbps. At this rate a single buffer contains almost 7
minutes of data. It is unacceptable to require several minutes of
recording or playing between pressing the stop button and actually
completing the operation.
We had to cleanly handle transfers consisting not only of a single
buffer, but of partially filled buffers as well. This required
modifications to the device drivers the inter-process
communications protocol and the applications themselves.



A Flexible Data Recorder Architecture

01/25/97 Page 29

A Flexible Data Recorder Architecture

Glenn Jones, Reach Technologies Inc
Phone: +1-604-220-6261
Fax: +1-604-597-2282
glenn@reach.bc.ca

Presented at the THIC meeting in Seattle WA
January 21, 1997



A Flexible Data Recorder Architecture

Abstract

01/25/97 Page 1

A Flexible Data Recorder Architecture
A system architecture for a low-cost digital data recorder is
described. The recorder is based on an Intel PC hardware platform
and the Windows 95 software environment. The hardware
architecture is based on Commercial-Off-The-Shelf components
with the exception of the physical interfaces to the recorder. This
architecture provides a low life cycle cost for the recorder and
offers a flexible migration path as newer and faster storage
peripherals become available. The software follows a distributed
process, object oriented architecture that easily supports the
addition of physical interfaces, transports, and analysis tools to the
recorder



A Flexible Data Recorder Architecture

Topics

01/25/97 Page 2

• Development goals

• System architecture

• Hardware architecture

• Software architecture

• Development challenges



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 3

• Requirements
• No calibration or complex periodic maintenance
• Low life-cycle cost
• Unattended operation
• Suitable for long term archive of data

• Design Goals
• Use commercial tape transports
• Scaleable architecture

• New transports
• New interfaces
• Faster bit rates

• User friendly
• Enhanced features



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 4

The recorder was developed initially for the Meteorological Satellite Ground Station market.
These satellites have telemetry links running in the range of 500 kbps to 2 Mbps.

At that time a set of requirements was formulated based on our experiences in designing
and building satellite ground stations and using the currently available recorders:

• No calibration or complex periodic maintenance - Many of our customers are in third
world countries with little infrastructure to support these activities.

• Low life-cycle cost - proprietary media for many recorders is expensive and not easily
procured in many countries.

• Unattended operation - ground stations acquire data around the clock and many run
unattended overnight.

• Capability to store all required information to process the telemetry data on the media -
in many systems ancillary data is required by the processing system when processing
the telemetry data. We wanted a way to record this data along with the telemetry for a
completely self contained archive.

A set of design goals was formulated in order to support making the recorder a viable
and supportable product:



A Flexible Data Recorder Architecture

Development Goals

01/25/97 Page 5

• Use commercial tape transports and not to modify the transports in any way if
possible. We do not have the expertise to design and manufacture tape transports -
nor any desire to do so.

• Scaleable Architecture - to be competitive we must respond quickly to customer
requests for new technologies.

• Faster and bigger tape transports are being announced at regular intervals

• Newer storage technologies are becoming available - e.g. magneto-optical.

• Record data direct to disk.

• Handle serial data rates from 1 kbps to >30 Mbps

• In order to differentiate our product in the market place we felt we needed a unique,
powerful, flexible, and yet easy to use interface between the users and the recorder.

• A further differentiating factor would be to use the computer in the recorder to support
the addition of features to provide telemetry testing capability. We envisioned
telemetry data synthesis, telemetry analysis on the record in either real-time or on the
recorded data. We wished to provide data import and export in standard file formats
on floppy disk or other file structured media.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 6

The recorder architecture is based around a set of data transfer
buffers. These buffers are managed by software that allows
applications to use them to pass data to each other. These
buffers are used to support both the inter-process
communication and DMA to physical devices.

The hardware is designed to use these buffers for performing
I/O to the media and to telemetry equipment.

The software takes advantage of the buffers by allowing many
different applications to use the buffers to exchange data.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 7

The data transfer buffers architecture is a very powerful tool.
With it we can:

• Connect a Transport application to a PCM Interface application to
provide the functionality of a tape recorder.

• Connect two Transport applications to copy data between media.

• Connect the DOS File Interface application to a Transport
application and import or export PCM data in standard DOS file
format.

• Connect the Satellite Simulator application to a Transport
application and record synthesized satellite telemetry to tape.

• Connect the Satellite Simulator application to a PCM Interface
application and play synthesized satellite telemetry directly out the
PCM Interface.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 8

Recording PCM Data

PCM Interface TTL PCM In

SCSI-2 Adapter Transport

Start Source

IRIG Reader
or DOS Clock

64 kByte
Buffer

PCM Interface

Transport

Start Source

Buffer Full

Buffer Empty

Software

Software

Software

Stop Source

Stop Source

Manages

Controls

Controls

Uses

Connection Manager
DMA PCM data to buffer

DMA PCM data from buffer



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 9

Recording PCM data:
1. The PCM Interface application is started.
2. The Transport application is started.
3. A Data Path is established from the PCM Interface to the

Transport.
4. The user presses record - the Transport sends a Start Source

message to the Connection Manager, the Connection Manager
passes the message to the PCM Interface.

5. The PCM Interface places time tagged data in a buffer and
sends a Buffer Full message to the Transport.

6. The Transport writes the data to the media and sends a Buffer
Empty message to the PCM Interface.

7. Steps 5 and 6 are repeated until the user selects stop, the end
of media is reached, or an error occurs.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 10

Playing PCM Data

PCM Interface TTL PCM Out

SCSI-2 Adapter Transport

Start Dest

IRIG Reader
or DOS Clock

64 kByte
Buffer

PCM Interface

Transport

Start Dest

Buffer Full

Software

Software

Software

Stop Dest

Stop Dest

Manages

Controls

Controls

Uses

Buffer Empty

Connection Manager
DMA PCM data from buffer

DMA PCM data to buffer



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 11

Playing PCM data:
1. The PCM Interface application is started.
2. The Transport application is started.
3. A Data Path is established from the Transport to the PCM

Interface.
4. The user presses play - the Transport sends a Start Destination

message to the Connection Manager, the Connection Manager
passes the message to the PCM Interface.

5. The Transport reads the data from the media and sends a
Buffer Full message to the PCM Interface.

6. The PCM Interface outputs the data and then sends a Buffer
Empty message to the Transport.

7. Steps 5 and 6 are repeated until the user selects stop, the end
of the data is reached, or an error occurs.



A Flexible Data Recorder Architecture

System Architecture

01/25/97 Page 12

Media Structure
• The media is structured with each recording session being

a Data Set that contains a header followed by the PCM
data.

• The media has a directory of all Data Sets that is read and
displayed when the media is loaded.

• PCM data is recorded on the media in 64 kByte blocks.
Each block has an 8 byte header that contains the time
stamp of the last word in the block and the channel Id.

• The media structure is proprietary as there was no
standard at the time of development.

• Different transports all implement the same structure.



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 13

The recorder is based on a standard “Wintel” Personal
Computer platform.

• Microsoft Windows 95 operating system

• Intel 80x86 or Pentium processor

• Standard peripheral devices
(disk, mouse, keyboard, etc.)

This allows us to use low cost (high production volume)
personal computers, and provides for powerful software and
hardware development tools at reasonable prices.



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 14

IRIG Reader

PCM Interface
TTL PCM Out

TTL PCM In

Peripheral
Controller

ISA Bridge

ISA Bus

System Disk

Floppy Disk

CPU

PCI Bridge

16 Mbytes
Memory

PCI Bus
SCSI-2
Adapter

Video

Local Bus

Transport 1

Transport 2

External SCSI

SVGA Monitor

IRIG Time Code

SCSI Bus

Keyboard & Mouse

Serial & Parallel I/F

Disk Controller

Provided by PC platform

Third party components

Reach Technologies



A Flexible Data Recorder Architecture

Hardware Architecture

01/25/97 Page 15

All system components except the PCM Interface are Commercial
Off the Shelf (COTS). This reduces life cycle cost by allowing the
customer to replace components in the field from local suppliers.
In the portable version of the recorder there is no PCI bus, all
components shown on the PCI bus are located on the ISA bus.
The serial ports provide remote control capability and Datum 9700
IRIG Time Code Translator emulation functionality.
The parallel port allows a standard PC printer to be connected.
The printer is used to print tape content listings, tape labels, tape
case liners, and operations schedules.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 16

In order to meet the requirements and design goals described
we developed a distributed process architecture and
implemented it using object oriented rapid application
development (RAD) tools.

• One process (Windows application) per transport / interface.

• Inter-process communication (Connection Manager)

• Centralized event logging (Event Logger)

• Utilize Windows support for distributed objects (OLE/COM)
The implementation of the Inter-Process communications is
designed for the high speed transfer of large blocks of data. It
runs at over 100 Mbps on a 120 MHz Pentium system.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 17

Distributed Application Environment

Event LoggerConnection
Manager

Exabyte 8505
DEC DLT
Iomega Jaz Disk
Fixed Disk

DOS File I/F
Application

Transport
Applications

Interface
Applications

System Disk
Satellite Simulator
IRIG Decoding

DAT Transport
Application

DAT Transport

PCM Interface
Application

PCM Interface



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 18



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 19

Connection Manager

• Controls the assignment of connections (“Data Paths”)
between applications.

• Passes data transfer control messages between
applications.

• Graphically displays the recorder configuration.

• Controls the saving and restoring of test configurations -
saves the state of each application and the window positions
for later restoration.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 20

Event Logger

• Used by all applications to display and log events

• Provide consistent application behavior when running in
scheduled and remote mode. In these modes no user input
can be requested in error situations.

• Used to provide customer support when errors occur - users
can print the event log and fax it to us, or copy it to diskette
and email it to us for help with problems.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 21

Transport Applications

• Control the transport for Recording, Playing, and Positioning.

• One application for each transport in the recorder.

• Provide a consistent user interface and operational paradigm
across different transports.

• Provides user control of the data transfer.

• Allow the easy connection of external transports for
transcription.



A Flexible Data Recorder Architecture

Software Architecture

01/25/97 Page 22

Interface Applications
• An interface is a source and/or destination of data.

• Can control physical devices.
(e.g. PCM Interface)

• Can control software data sources.
(e.g. Satellite Simulator)

• Can control software data destinations.
(e.g. IRIG decoder)

• May or may not provide user control of the data transfer.
• If an interface provides user control of the data exchange it

can connect to another interface.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 23

Implementing the recorder under the Microsoft Windows 95
operating system presented several challenges that had to be
overcome:

• Virtual Memory

• Interrupt Latency

• Inter-process Communications

• Low Bit Rates



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 24

Virtual Memory
Windows 95 is a virtual memory based operating system. This
means that any large memory blocks allocated by software are
likely not to be allocated from contiguous physical memory. This
has a large impact on the performance of our DMA transfers.
Windows uses a 4kByte page size and we use 4 kByte buffers. If
these buffers are allocated by Windows they may have up to 16
fragments. Each fragment requires a separate DMA transfer with
associated overhead. The overhead is caused by interrupt
servicing latency and programming the DMA controller for the next
transfer.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 25

Virtual Memory
To solve this problem we have implemented a device driver that
loads at system boot and allocates the buffer memory from system
physical memory before Windows 95 maps it. The driver performs
three functions:

• Provides physically contiguous memory for the DMA buffers

• Provides physical addresses for programming the DMA
controllers

• Maps the memory and provides virtual addresses to applications
to allow software access to the data.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 26

Interrupt Latency
Windows virtualizes all hardware devices to allow the
sharing of system resources between applications. This
introduces sometimes severe delays in interrupt servicing.
The solution was to design buffering into the PCM Interface
card to handle the latency, and to implement a Virtual Device
Driver (VxD) to reduce the interrupt latency.
We have implemented 64 kbits of buffering in the PCM
Interface that allows us to handle interrupt latencies of up to
6.4 mSec when running at 10 Mbps.
The VxD allows us to immediately program the DMA
controller upon receiving the DMA completion interrupt.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 27

Inter-process Communications
The standard Windows Inter-process communication features are
not suitable for high volume low latency data transfers.
In order to handle real time buffer exchange we had to implement
our own inter-process communications protocol. This
communications protocol is based on the large memory buffers
and windows messages passed between applications.
An application will receive a message from its partner application
telling it that a buffer is available for processing. When the
application has finished with the buffer it sends a message to the
partner application to let it know the buffer is ready.
This protocol is encapsulated in a RAD visual component that
makes development of new applications very fast and easy.



A Flexible Data Recorder Architecture

Development Challenges

01/25/97 Page 28

Low Bit Rates
The recorder was initially developed for bit rates from 500 kbps to
2 Mbps. The architecture was optimized for data transfers at these
rates. The 64 kByte buffer size is a result of this.
We have since been requested to provide solutions for data rates
as low as 1 kbps. At this rate a single buffer contains almost 7
minutes of data. It is unacceptable to require several minutes of
recording or playing between pressing the stop button and actually
completing the operation.
We had to cleanly handle transfers consisting not only of a single
buffer, but of partially filled buffers as well. This required
modifications to the device drivers the inter-process
communications protocol and the applications themselves.


