Digital Libraries, Data Grids, and Persistent Archives

Reagan W Moore
San Diego Supercomputer Center
10100 John Jay Hopkins Dr, La Jolla CA 92093
Phone: +1-858-534-5073
E-mail: moore@sdsc.edu

Presented at the THIC Meeting at the Hilton San Diego/Del Mar
Del Mar CA 92014-1901
on January 22, 2002
Digital Libraries, Data Grids, and Persistent Archives

Reagan W. Moore
San Diego Supercomputer Center
moore@sdsc.edu
http://www.npaci.edu/DICE/
Data and Knowledge Systems Group

Staff
- Reagan Moore
- Ilkai Altintas
- Chaitan Baru
- Sheau Yen Chen
- Charles Cowart
- Amarnath Gupta
- George Kremenek
- Bertram Ludäscher
- Richard Marciano
- XuFei Qian
- Roman Olshanowsky
- Arcot Rajasekar
- Abe Singer
- Michael Wan
- Ilya Zaslavsky
- Bing Zhu

Graduate Students
- A. Bagchi
- S. Bansal
- A. Behere
- R. Bharath
- S. Bharath
- M. Kulrul
- L. Sui

Undergraduate Interns
- N. Cotofana
- M. Shumaker
- J. Trang
- L. Yin
- +/- NN
Accessing Data

• How do you access storage systems at remote sites in someone else’s administration domain?

• How do you organize distributed data into a cohesive collection with global, persistent identifiers?
Information Management Projects

• **Digital Libraries**
 – CDL - AMICO
 – DARPA/USPTO - patent digital library
 – NLM Visible Embryo digital library - GMU
 – NSF Digital Library Initiative, Phase II - UCSB, Stanford
 – NSF NPACI Digital Sky - Caltech 2MASS sky survey
 – NSF NSDL - UCAR / Columbia / Cornell / UCSB

• **Data Grid Environments**
 – DOE Data Visualization Corridor - LLNL
 – DOE Particle Physics Data Grid - Stanford, Caltech
 – NASA Information Power Grid - NASA Ames
 – NIH Biomedical Informatics Research Network
 – NSF Grid Physics Network - U Florida
 – NSF National Virtual Observatory - Johns Hopkins University / Caltech
 – NSF Southern California Earthquake Center - ISI

• **Persistent Archives**
 – NARA Persistent Archive
 – NHPRC - Archivist workbench
Specifying levels of Abstraction

• Technology management becomes simpler if the persistent archive infrastructure operates on abstractions, rather than an explicit physical implementation of a resource

• Can we abstract
 – Digital objects
 – Storage
Technology Management

- Application

 - Operating System

 - Storage System Abstraction
 - Storage System
 - Digital Object Abstraction
 - Digital Object

 - Display System Abstraction
 - Display System
Types of Digital Entity Abstractions

- **Logical representation**
 - What does the digital entity represent?
 - What is the associated meaning?
- **Physical representation**
 - What is the physical structure of the digital entity?
Levels of Abstraction for Bits

Abstraction for Digital Entity

Logical: I-nodes

Physical: Track / Sector

Digital Entity

Bit Stream

Abstraction for Repository

Logical: File Name

Physical: File System (NFS/AFS/NTFS)

Repository

Disk

National Partnership for Advanced Computational Infrastructure
San Diego Supercomputer Center
Managing Distributed Storage

• Separate the organization of digital objects from their physical storage
 – Logical Name Space to manage attributes about the digital objects
 – Data handling system to manage interactions with remote storage systems
• Create storage abstraction layer
• Storage Resource Broker (SRB) provides data management system
Levels of Abstraction for Data

Abstraction for Digital Entity
- Logical: Data Model (units, semantics)
- Physical: Encoding Format (syntax, structure)

Abstraction for Repository
- Logical: Name Space
- Physical: Data Handling System - SRB/MCAT

Digital Entity
- Files

Repository
- File System, Archive
Visible Embryo Project

Disk Cache

OHSU

GST

Eolas

Disk Cache

UIC Startup

ATD Net

BEN

ASX200

AFIP: Collab WS

NIC

MSWS

NT WS

MSWS

NT WS

Oakland

100 Gbit

Vegas

HSCC

WRL

DS3

JHU

OC-3

Disk Cache

OC-3

VBNS

OC-12

JHU

Abilene

OC-3

GMU

Disk Cache

DC POP

Abilene

OC-3

SDSC

Archive

NSP

National Partnership for Advanced Computational Infrastructure

San Diego Supercomputer Center
Disaster Response

- Support replicas - provide multiple copies of a data set stored at multiple sites, but accessed by the same logical file name.
- On access, map from logical file name to the physical file name. If the file is not accessible, automatically fail over to a replica.
SDSC Storage Resource Broker & Meta-data Catalog

<table>
<thead>
<tr>
<th>Application</th>
<th>Clients</th>
<th>Prime Server</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, C++, Libraries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linux I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unix Shell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Java, NT Browsers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLL / Python</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolog Predicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consistency Management / Authorization-Authentication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Name Space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metadata Transport</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalog Abstraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Abstraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB2, Oracle, Sybase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSS, ADSM, UniTree, DMF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unix, NT, Mac OSX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB2, Oracle, Postgres</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National Partnership for Advanced Computational Infrastructure
San Diego Supercomputer Center
Information Management - Logical Name Space

- Set of attributes to describe digital entities that are registered into the logical name space
 - SRB metadata - Unix file system semantics
 - Provenance metadata - Dublin Core
 - Resource metadata - User access control lists
 - Discipline metadata - User defined attributes
- Each digital entity may have unique attributes
Information Management

• Abstraction layer for interacting with information repositories
 – Manage the schema and physical table structures of a database
 – Extensible schema
 – User defined attributes

• Extensible Metadata CATalog (EMCAT) manages collections

• mySRB.html interface supports dynamic collection creation
Levels of Abstraction for Information

- Abstraction for Digital Entity
 - Logical: Collection Schema
 - Physical: XML Syntax

- Digital Entity

- Abstraction for Repository
 - Logical: Database Schema
 - Physical: EMCAT/CWM

- Repository

- Metadata Attributes

- Database
Knowledge Management - Discovery across Collections

- Characterization of relationships between attributes
 - Semantic / logical - cross-walks
 - Procedural / temporal - records management
 - Structural / spatial - GIS
- Abstraction layer for knowledge repositories
- Mapping from collection attributes to discipline concepts
- Model-based Mediation supports mapping from knowledge relationships to rule-based inference engines
Levels of Abstraction for Knowledge

Abstraction for Digital Entity
- **Logical:** Relationship Schema
- **Physical:** ER/UML/XMI/RDF syntax

Abstraction for Repository
- **Logical:** Knowledge Repository Schema
- **Physical:** Model-based Mediation System

Digital Entity
- **Concept Space** (ontology instance)

Repository
- **Knowledge Repository**
ERA Concept model

Mediation of Information using XML Storage Resource Broker/Extensible Meta-data CATalog

ERA: Archival Components Concept

Grid Security Infrastructure

Tapes

Disks

Internet

Records Schedule

Accessing Workbench
- Accession
- Verify
- Wrap & Containerize
- Describe

Archival Repository
- Collection
- Collection
- Metadata

Reference Workbench
- Query
- Rebuild
- Present

Collection

Collections

Archival Research Catalog

Older Fulfillment System
Further Information

• Academic
 http://www.npaci.edu/DICE

• Commercial - Storage Resource Broker
 constantin.scheder@gat.com