Optimization of Head/Tape Interface

J Zhu and F Talke
Center for Magnetic Recording Research
University of California at San Diego
San Diego CA 92093-0401
Phone: +1-858-534-3646, FAX: +1-858-534-2720
E-mail: ftalke@ucsd.edu

Presented at the THIC Meeting at the Bahia Hotel
998 West Mission Bay Dr, San Diego CA 92109
on January 17, 2001
Numerical Optimization of Magnetic Tape Heads

Jiasheng Zhu and Prof. F. E. Talke

Center for Magnetic Recording Research
UC, San Diego
Outline

• Optimal design of single, double, triple module head

• Effect of head design parameters on head/tape spacing and contact pressure

• Effect of head/tape interface parameters

• Summary
Optimal Design of Single, Double and Triple Module Head
Optimization criteria

Minimize the head/tape spacing
Design parameters---single module head

Normalized design parameters:
\[\frac{r}{l}, \frac{w}{l}, \frac{s_{\text{max}}}{l} \]
Optimal design---- single module head

- w/l = 0.07
- hmax/l = 0.04
- r/l = 0.6

Max. contact pressure: 135 kPa

DLT3 tape, G-W contact model
Tape speed: 3.8 m/s
Tape tension: 87.5 N/m
Design parameters----double module head

Normalized design parameters:
\(\frac{r}{l}, \frac{w}{l}, \frac{s_{\text{max}}}{l} \)
Optimal design------double module head

Max. contact pressure: 441 kPa
DLT3 tape, G-W contact model
Tape speed: 3.8 m/s
Tape tension: 87.5 N/m

w/l=0.41
h_{max}/l=0.035
r/l=1.25
l=10 mm
Design parameters---- triple module head

Normalized design parameters:
\[\frac{r}{l}, \frac{w_1}{l}, \frac{w_2}{l}, \frac{h}{l}, \frac{h_{\text{max}}}{l} \]
Optimal design---- triple module head

Max. contact pressure: 326 kPa
DLT3 tape, G-W contact model
Tape speed: 3.8 m/s, Tape tension: 87.5 N/m

h_{max}/l=0.025
h/l=0.025
w_1/l=0.3
w_2/l=0.3
r/l=1.0, l=12 mm
Effect of head dimensional parameters on head/tape spacing and contact pressure
Effect of w on head/tape spacing distribution

Distance along head/tape interface (mm)

Head/tape spacing (nm)

$r/l=0.64$

$s_{max}/l=0.04$

$w/l=0.05$

$w/l=0.06$

$w/l=0.095$

$w/l=0.08$

$w/l=0.09$
Effect of w on uniform head/tape spacing

$r/l=0.64$

$s_{\text{max}}/l=0.04$

$l=20$ mm

$0.05 \leq w/l \leq 0.093$

Optimal $w/l=0.08$
Effect of \(w \) on contact pressure distribution

Contact pressure (kPa)

Distance along head/tape interface (mm)

- \(w/l = 0.05 \)
- \(w/l = 0.06 \)
- \(w/l = 0.08 \)
- \(w/l = 0.09 \)
- \(w/l = 0.095 \)

Other values:
- \(r/l = 0.64 \)
- \(s_{\text{max}}/l = 0.04 \)
Effect of w on $p_c(\text{max})$ and $p_c(\text{ctr})$

![Graph showing the relationship between w/l and $p_c(\text{max})$ and $p_c(\text{ctr})$. The graph plots contact pressure (kPa) against w/l with two lines: one for $P_c(\text{max})$ and another for $P_c(\text{ctr})$. The optimal value of w/l is marked as 0.08.]
Effect of r on uniform head/tape spacing

Nominal head/tape spacing (nm)

$s_{\text{max}}/l=0.04$

$w/l=0.08$

$l=20\text{ mm}$

Optimal $r/l=0.64$

$0.55 \leq r/l \leq 0.80$
Effect of r on $p_c(\text{max})$ and $p_c(\text{ctr})$
Effect of s_{max} on uniform head/tape spacing

- $r/l = 0.64$
- $w/l = 0.08$
- $l = 20 \text{ mm}$

Optimal $s_{\text{max}}/l = 0.04$

$0.035 \leq s_{\text{max}} \leq 0.05$
Effect of s_{max} on $p_c(\text{max})$ and $p_c(\text{ctr})$
Performance comparison

<table>
<thead>
<tr>
<th>Head type</th>
<th>Spacing (nm) (Center region)</th>
<th>p_c (kPa) (Center region)</th>
<th>Max. p_c (kPa) (Head edges)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>45</td>
<td>23</td>
<td>135</td>
</tr>
<tr>
<td>Double</td>
<td>43</td>
<td>32</td>
<td>441</td>
</tr>
<tr>
<td>Triple</td>
<td>44</td>
<td>30</td>
<td>326</td>
</tr>
</tbody>
</table>
Effect of Head/Tape Interface Parameters
Effect of tape tension on uniform spacing

(11b)
Effect of tape tension on $p_c(\text{max})$ and $p_c(\text{ctr})$

![Graph showing the effect of tape tension on contact pressure](image-url)
Effect of tape speed on uniform spacing

![Graph showing the effect of tape speed on head/tape spacing. The x-axis represents tape speed (m/s) ranging from 0 to 20, and the y-axis represents head/tape spacing (nm) ranging from 40 to 50. The line shows a decrease in head/tape spacing as tape speed increases.](image-url)
Three different contact models

- DLT3 experimental data
- Greenwood-Williamson model
- Parabolic model
- Power function model

Spacing (nm)

Contact pressure (kPa)

h = contact spacing

Smooth Tape

Head
Effect of contact models on spacing prediction

Power function model
Greenwood-Williamson model
Parabolic model

DLT3 tape
v=3.8 m/s
T=87.5 N/m
Effect of tape medium

Distance along head/tape interface (mm)

Head/tape interface spacing (nm)

DLT3

DLT3XT

DLT4

v = 3.8 m/s
T = 87.5 N/m
G-W contact model
Summary

• Single, double and triple module heads were optimized
• Effect of head dimensional parameters on head/tape spacing and contact pressure was studied
• Effect of head/tape interface parameters was investigated