Virtual Area Storage Networks and Secure Fabric Routing

Enabling Fabric Provisioning and Consolidation

Ravindra Neelakant
Cisco Systems Co
170 W Tasman Dr, San Jose CA 95134-1706
Phone: +1-408-853-3863, FAX: +1-408-853-4818
E-mail: ravijn@cisco.com

Presented at the THIC Meeting at the Sony Auditorium,
3300 Zanker Rd, San Jose CA 95134-1940
April 19-20, 2005
Virtual Storage Area Networks & Secure Fabric Routing

Enabling Fabric Provisioning and Consolidation

Ravindra Neelakant
Sr. Technical Marketing Engineer
Storage Business Unit
Cisco Systems Inc.
ravijn@cisco.com
Agenda

- Fabric Virtualization
 - Cisco’s Virtual SANs
- Fabric Routing
 - Cisco’s Inter-VSAN Routing
- Securing the Solution
Fabric Virtualization and Fabric Routing

Three Key Concepts

- **Fabric Virtualization**
 Provide independent or ‘virtual’ fabric services on a single physical switch

- **Fabric Routing**
 Ability to provide selected connectivity between virtual fabrics without merging them

- **Virtual Fabric Trunking**
 Ability to transport multiple virtual fabrics over a single ISL or common group of ISLs
Fabric Virtualization
Storage Networking Evolution

Homogenous “SAN Islands” → Intelligent Storage Network → “Any-to-Any” Access

- ERP SAN
- Backup SAN
- Engineering SAN
- Midrange DAS
- Consolidated SAN Fabric
- Dynamic Provisioning
- Storage Virtualization
- Storage Utility
- Data Mobility
- HSM
- LAN Free Backup
- Remote Replication
- QoS
- HA
- Multi-protocol
- Security
- VSAN
- Diagnostics
- Storage Utility
SAN Islands Have Purpose – At a Cost

- SAN islands are built to address several technical and non-technical issues:
 - Maintains isolation from fabric events or configuration errors
 - Provides isolated and controlled management of island infrastructure
 - Driven by bad experiences of large multi-switch fabrics

However . . .

- Often over-provisioned port count for future growth – wasteful and costly
- Very widespread issue today – some architects still recommending islands
Fabric Virtualization provides:

- A method to divide a common physical fabric into virtual domains
- An infrastructure analogous to VLANs in the Ethernet world
- A method to still isolate virtual fabrics from one another for:
 - High availability
 - Security
 - Management
- A method to reduce wasted ports as experienced in the island approach
- A method to charge-back for used resources from the physical fabric
Uses For Fabric Virtualization
Consolidating SAN Islands - Creating a Fabric Utility

- Virtual fabrics support the need to consolidate numerous SAN islands
- Fabrics can be migrated from physical to virtual implementations
- New fabrics are provisioned through switch commands, not physical adds, moves, changes
- Fabrics are provisioned as a service with exact # of ports required without over provisioning
Uses For Fabric Virtualization

Cost-Effective Departmental or OS-Specific SANs

- Virtual fabrics enable provisioning of numerous purpose-specific fabrics
 - No new physical infrastructure
- Keep OS’s separated more securely without zoning
- Keep fabric-specific events (eg. LUN discovery) isolated
- Grow and shrink fabrics dynamically and without impact to other fabrics
Uses For Fabric Virtualization

Cost-Effective Development, Staging, Backup SANs

- Instead of building separate physical development fabric, build a virtual one
 - Migrate to existing fabric later
 - Use free ports in larger SAN
- Build a virtual tape backup SAN
 - Can be expanded using routing to share tape resources
- Build a staging SAN for new applications or servers
 - Test stability in isolated staging virtual fabric before adding into larger SAN
Uses For Fabric Virtualization
Cost-Effective SAN Extension Integration

- Overlay data replication fabric(s) on common physical fabric
 - No need for separate pair of switches for each replication connection
 - Use one virtual fabric per replication connection
- A *bonus* is to be able to share common SAN extension circuits amongst multiple virtual fabrics
- Fabric routing adds to resiliency of solution
Fabric Virtualization – The Full Solution

To build a cost saving fabric virtualization solution, 7 key services are required:

- **Virtual Fabric Attachment** – the ability to assign virtual fabric membership - preferably port-level
- **Multiprotocol Extensions** – the ability to extend virtual fabric service to iSCSI, FCIP, FICON, etc.
- **Virtual Fabric Services** – the ability to create fabric services per virtual fabric (routing, zones, RSCNs, QoS, etc.)
- **Virtual Fabric Diagnostics** – the ability to troubleshoot per virtual fabric problems
- **Virtual Fabric Security** – the ability to define separate security policies per virtual fabric
- **Virtual Fabric Management** – the ability to map and manage virtual fabrics independently
- **Inter-Fabric Routing** – the ability to provide connectivity across virtual fabrics – *without merging the fabrics*
Three Approaches to Fabric Virtualization

Switch-Based
- Switch line-card partitioning
- Island-level granularity
- No shared ISLs
- Interconnection, but no consolidation

Appliance-Based
- Dedicated appliance provides routing
- Island-level granularity
- No shared ISLs
- Interconnection, but no consolidation

Fabric-Based
- Fabric-wide virtualization via hardware partitioning
- Port-level granularity
- Fully shared ISLs
- Drives consolidation
Cisco’s Approach to Fabric Virtualization

Introducing Virtual SANs (VSANs)

- A VSAN provides a method to allocate ports within a physical fabric to create virtual fabrics
- Analogous to VLANs in Ethernet
- Virtual fabrics created from larger cost-effective physical fabric
- Reduces wasted ports with islands
- Fabric events are isolated per VSAN – maintains HA (ie. RSCNs)
- Hardware-based isolation - traffic is explicitly tagged across ISLs with VSAN membership info
- Statistics gathered per VSAN
Fabric Virtualization - MDS 9000 Family

- Each port on the MDS 9000 Family exists in a VSAN
- Up to 256 VSANs in a single switch (hardware can support up to 4095)
- Logical configuration to move a port from one fabric to another
- WWN-based VSANs can provide automated VSAN membership
- Basis for Virtual Fabric Trunking (VFT) Extended Header (ANSI T11 FC-FS-2 section 10.3)
VSANs + FCIP for WAN Cost Savings

- Cost savings from multi-application SAN extension consolidation
- Multiple VSANs carried securely over Port Channeled FCIP links
- VSANs can be scaled and provisioned independently of FCIP and WAN link provisioning
VSANs + iSCSI for Added Flexibility

- VSANs are extended to iSCSI through intelligent mapping
- Transparent mapping mimics Fibre Channel attachment
 - iSCSI hosts discovered and displayed in Cisco Fabric Manager
 - iSCSI hosts bound to unique WWNs creating static relationship enabling:
 - iSCSI host VSAN membership
 - Zoning of iSCSI and FC devices
 - Accounting against iSCSI devices
 - iSCSI device topology mapping
VSANs + FICON for Fabric Consolidation

- Separate physical fabrics
- Over-provisioning ports on each island
- High number of switches to manage

Collapsed Fabric with VSANs
- Clean partitioning of different operating environments (FICON, Z-Series Linux-FCP, Open Systems FCP)
- Significantly more stable and manageable than current zoning+best practices approach
Challenge: Optimize storage usage while supporting heterogeneous storage

- Virtual Targets with Virtual LUNs are built from discovered physical storage
- Virtual LUNs and targets can be zoned to destined host(s)
- Separate VSAN used to isolate physical storage
- Ability to virtualize across multiple vendors’ storage arrays
- Cisco working with several partners to deliver solutions
Fabric Routing
So, What About Fabric Routing?

- We use fabric as an extension of virtual fabrics to enable cross-fabric connectivity
- Done without merging the routed fabrics
 - Without propagation of irrelevant fabric events
 - Without concern for overlapping domain IDs
 - Without concern for fabric interoperability differences
- Follows in footsteps of the Ethernet world
 - Layer-3 Switching ≈ Fabric Routing
Uses For Fabric Routing
Securely Sharing Common Resource

- Overlay data replication fabric(s) on common physical fabric
 - No need for separate pair of switches for each replication connection
 - Use one virtual fabric per replication connection
- A *bonus* is to be able to share common SAN extension circuits amongst multiple virtual fabrics
- Fabric routing adds to resiliency of solution
Uses For Fabric Routing
Securely Interconnecting SAN Islands

Fabric routing can help with interoperability issues

- Connecting SANs of different vendors
- Connecting SANs of different interop modes
- Connecting SANs with overlapped Domain_IDs

Can help with migrating from old SANs to new enterprise SANs

Still a challenge to support

Lots of combinations to deal with in terms of testing
Uses For Fabric Routing

Securely Implementing SAN Extension Solutions

- Most common use for SAN routing services
- Augments the high availability of the solution
 - Filters unnecessary events
 - Isolates from remote faults
 - Enables selective visibility
- Different protocols used to implement fabric routing
- Must enable selective alerts/faults to pass
- Must work over multiple network transports
Two Main Approaches to Fabric Routing

External Router
- Dedicated fabric router connected to all fabrics
- Not typically director class - HA concerns
- Performance limited by that of appliance

Embedded Routing
- Routing enabled in switch/director hardware
- No performance penalty
- Port-level granularity
Cisco’s Approach to Fabric Routing

Inter-VSAN Routing (IVR)

- Cisco delivers fabric routing through Inter-VSAN routing (IVR)
- Embedded capability in all MDS 9000 Family switch hardware
- No need for external router
- No performance impact
- Leverages any network transport
 - Fibre Channel
 - Optical (DWDM, CWDM, SONET)
 - IP (FCIP)
- *NEW* now includes NAT services
IVR Operation within a Single Switch

- IVR enabled in any Cisco MDS 9000 Family switch using a license key
- Effectively turns any MDS 9000 Family switch into giant fabric router
- Works with all fabric interoperability modes
- Enabled through simple zone creation (wizard)
IVR Operation Across Multiple Switches

- One or more transit VSANs are used to interconnect routed VSANs
- Transit VSAN can use any transport including native FC, IP (FCIP), or any optical technology - not just IP only
- Only specified devices in end VSANs are routed, not all devices in routed VSANs
- Enabled through simple zone creation (wizard)
Inter-VSAN Routing (IVR): Sharing Resources Across VSANs

- Allows sharing of centralized storage services such as tape libraries and disks across VSANs – without merging separate fabrics (VSANs)
- Provides high fabric resiliency and VSAN-based manageability
 - Works for all MDS 9000 switches with a software upgrade to SAN-OS 1.3(1)
 - Distributed, scaleable, and highly resilient architecture
 - Transparent to third-party switches
- Enables blade-per-VSAN architecture for blade servers
Inter-VSAN Routing (IVR): Resilient SAN Extension Solutions

- Minimize the impact of change in fabric services across geographically dispersed sites
 - Limit fabric control traffic such as SW-RSCNs and Build/Reconfigure Fabric (BF/RCF) to local VSANs
 - Flexible connectivity with the highest availability
 - Works with any transport service (FC, SONET, DWDM/CWDM, FCIP)

Inter-VSAN Connection with Completely Isolated Fabrics

- Replication VSAN_1
- Local VSAN_2
- Transit VSAN_3 (IVR)
- Metro DWDM (or SONET/SDH or FCIP)
- Replication VSAN_4
- Local VSAN_5

EISL#1 in Port Channel
EISL#2 in Port Channel
Securing the Environment
Securing the Virtual Environment
What Are We Worried About?

- Virtual fabrics and fabric routing change the security model
 - Previously isolated environments now are connected together
 - SANs may be extended outside of the data center
 - Multiple administrators possible

- Many solutions available from Cisco
 - Fabric authentication services
 - Fabric encryption services
 - Management access control and roles-based access control
WWN-Based VSANs

- Previously each port in MDS 9000 Family belongs to one VSAN only
- Device connected to port belongs to VSAN configured on port
 - Reconfiguration necessary to move device to new port
- New feature added in SAN-OS 2.0 enables WWN-based VSANs
 - Device VSAN membership based on device WWN
 - Can authenticate before assignment
 - If not recognized, can be put in default VSAN or disabled
Securing the Virtual Environment

Fabric Authentication Services

- Standard exist today to enable authentication of SAN devices
- Supports both FC and iSCSI
 - ANSI T11 - FC-SP for FC
- Supported for both device-to-switch and switch-to-switch in Cisco MDS 9000 family
- Authenticate all ISL connections
 - Ensure who you’re connecting to
 - Works also over FCIP connections
- Authenticate host connections
 - Both FC and iSCSI
 - No storage support yet
Securing the Virtual Environment

Fabric Encryption Services

- Encryption services especially useful when SAN extend outside the data center
- Today available on the Cisco MDS 9000 Family of switches
 - MPS-14/2 Switching module or MDS 9216i fabric switch
 - FCIP Tunnel Encryption
 - iSCSI initiator-to-switch encryption
- Uses standards-based IPSEC services
- Cisco solution is hardware based
 - Introduces only 10us of latency
Securing the Virtual Environment

Fabric Management Services

- Fully secured access to Cisco MDS 9000 Family of switches
 - Secure Shell (SSH and SFTP)
 - Secure SNMP (SNMPv3)
 - Secure API access (SSL + SMI-S)
- Full RADIUS and TACACS+ support for centralized account control
- Industry’s only customizable Roles-Based-Access-Control (RBAC)
 - Defined on a per-VSAN and/or per-command basis (function-specific)
Conclusion

- Cisco is the only vendor to offer fully embedded virtual fabrics and fabric routing today
- Full MDS 9000 Family support for VSANs and IVR
- VSANs now form basis of ANSI T11 standard
- Virtual fabrics and fabric routing reduce costs
- Always working on new solutions leveraging Cisco’s VSAN technology
Presenting the Cisco MDS 9000 Family

Industry Leading Investment Protection Across a Comprehensive Product Line

MDS 9000 Family

MDS 9000 Modules

Mgmt

OS

Cisco Fabric Manager

MDS 9000 Family-OS
Cisco Systems

Empowering the Internet Generation